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Abstract 

   

The astrophysical αω dynamo converting angular momentum to magnetic energy 

can be interpreted as a self-excited Faraday dynamo together with magnetic relaxation 

coupling the dynamo poloidal field to the toroidal field produced by dynamo currents. 

Since both toroidal and poloidal fields are involved, the system can be modeled as 

helicity creation and transport, in a spheromak plasma configuration in quasi-equilibrium 

on the time scale of changes in magnetic energy. Neutral beams or plasma gun injection 

across field lines could create self-excited spheromaks in the laboratory.  

 

 Introduction: The αω Dynamo 

E. N. Parker first proposed introducing an αω dynamo into Faraday’s Law [1, 2], 

which we choose to write as (MKS) [3]: 

 

∇φ  +  ∂A/∂t = - E  = v x B  -  R    (1) 

 

Here R represents resistive losses and also turbulent transport. For axisymmetry (v = vφ , 

∇φφ = 0), v x B in Eq. (1) drives toroidal flux ∝ APOL (giving Bφ) but it does not directly 

drive poloidal flux ∝ Aφ. To obtain a self-excited dynamo, Parker added an ad hoc term 

αBφ which couples poloidal and toroidal fluxes. Parker attributed α to pre-existing 

turbulence causing the growth of a coherent dynamo field from a very weak seed field 

around an accretion site.  

  

The αω Dynamo as Helicity Injection 

Since the αω self-excited dynamo involves a magnetic field with both toroidal 

and poloidal fields, the field has helicity. We define helicity as K = ∫dx A⋅ (∇x A), with 

no gauge ambiguity if A only represents magnetic fluxes [5]. Using Eq. (1), we obtain: 
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dKdt = ∫dx ∇⋅(∂A/∂t x A)  -  2∫dx ∇φ⋅B  -  2∫dx R⋅B   (2) 

 

The first term on the right represents inductive current drive in fusion tokamaks and 

reversed-field pinches (RFP’s). The second term represents electrostatic generation of 

helicity, while the term with R represents resistive losses, and also turbulent transport of 

helicity, which however, conserves helicity for most processes [3, 4]. Eq. (2) has been 

invoked as a unified description of helical fields, by Boozer to describe current drive in 

fusion tokamaks, RFP’s and spheromaks [5], and more recently by Blackman and Ji to 

unify these fusion applications with self-excited dynamos in astrophysics [6].  

That Eq. (2) can describe an αω dynamo driven by momentum follows from the 

coupling of helicity to momentum injection, as follows. Since most of the helicity is in 

the mean field Bo [3, 4], Eq. (2) is equivalent to the mean field energy equation obtained 

from the symmetric average of B dotted into Faraday’s Law, giving: 

 

 ∂(Bo
2/2µo)/∂t = µo

-1∇⋅<(v x B) x B> + <j⋅(v x B)>  -  (Bo
2/2µo)/τΩ  (3) 

 

where τΩ is the ohmic decay time and we omit perturbations in B2. The corresponding 

kinetic equation is found by dotting v into the momentum equation, giving: 

 

ρ∂(vo
2/2)/∂t = vo⋅F   - <j⋅(v x B)>  -  ρ(vo

2/2)/τM  + vo⋅S  (4) 

 

F =    {ρ(voφ
2/r) - ρ∇VG - ∇p}    (5)  

   

with symmetrized volume momentum source S and force F; momentum confinement 

time τM; pressure p; gravitational potential VG; and we use v⋅(j x B) = - j⋅(v x B). Adding 

Eqs. (3) and (4) introduces the momentum power source vo⋅S into Eq. (3); or 

equivalently, a drive term in Eq. (2) given approximately by (2µo /λ)∫dx vo⋅S where λ is 

the lowest eigenvalue of ∇ x B = λB defined on the volume where momentum is injected.   

 

The αω Dynamo as an Internal Electrostatic “Gun” 
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Ignoring induction, we can write Eq. (2) as it usually appears in spheromak 

literature describing electrostatic helicity injection [4, 5]:  

 

 dK/dt = 2VΨGEN - K/τK     (6) 

 

where ΨGEN is poloidal flux in a magnetized plasma gun with electrostatic voltage V 

applied across this flux, and τK represents the last term in Eq. (2), with τK ≈  τΩ as noted 

above (or loss by cosmic rays as discussed below). In the laboratory, V (coming from φ 

in Eq. (2)) has usually been applied by a capacitor bank, though conceptually V could be 

supplied by a Faraday disk giving V = ΩΨGEN for rotation frequency Ω, and the entire 

Faraday gun assembly could face the plasma directly via a hole in the vessel wall [7].   

 Taking a clue from Siemen’s 19th century invention of the self-excited dynamo 

[2], one might use the dynamo current itself to produce the Faraday dynamo bias field, 

giving also a toroidal field due to the current, hence helicity. Replacing the rotating disk 

by a plasma with non-uniform rotation yields a self-excited dynamo inside the plasma. 

This is the Parker αω dynamo, in which, given even an infinitesimal seed field, angular 

momentum alone creates helicity in the plasma. A self-excited V =  ΩΨPOL arises from φ  

produced by charge density ∝∇⋅(v xB) [8]. Helicity injection is then given by: 

 

 dK/dt = 2ΩΨPOL
2 -   K/τK      (7)  

 

where K ≈ 2ΨPOLΨTOR. 

 

 Role of Magnetic Relaxation in Self-Excitation 

We define magnetic relaxation broadly as any mechanism coupling ΨPOL and ΨTOR 

so that creating one produces the other also. By Eq. (7), K could grow exponentially if 

magnetic relaxation produces ΨPOL ∝ ΨTOR, analogous to Parker’s α. Magnetic relaxation 

in laboratory RFP’s and spheromaks has been attributed to MHD tearing modes; explicit 

α processes have been proposed to explain astrophysical dynamos [2, 9]; and both 

laboratory experience and simulations of experiments suggest that magnetic relaxation in 

the hot plasmas of astrophysics and fusion research is probably ubiquitous unless it is 
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deliberately suppressed (as in tokamaks). Thus we will assume that some mechanism of 

magnetic relaxation coupling toroidal and poloidal fluxes can be available in fusion 

experiments, and generally would be in astrophysical applications where there is ample 

evidence of strong magnetic fields around accretion sites [8]. 

Magnetic relaxation by turbulence has not always been useful in fusion research 

[4], and MHD turbulence might kill the dynamo [9]. The mechanism of Ref. [9] is 

thought to avoid turbulence, as could injecting both components of v in Eq. (1) in a 

fusion device. The likely circumstance that accretion yields only angular momentum 

requires a persisting α, together with the toroidal mean-field equation found by taking the 

toroidal component of the curl of Eq. (1):  

 

∂Bφ/∂t = r(∂Ω/∂r)Br + r(∂Ω/∂z)Bz = r∇Ω⋅BPOL  (8) 

 

Thus BPOL drives Bφ, by sheared rotation [2, 9], while localization in z of the dynamo 

EMF (∝Ω) drives current along field lines exiting the spinning dynamo region. 

  MHD problems can be diagnosed in simulations by monitoring growth of local 

cross helicity v⋅B which kills the dynamo if v fully aligns with B [10]. 

 

Simplified αω Dynamo  

  Besides assuming some mechanism coupling poloidal and toroidal fluxes (which 

we have defined as magnetic relaxation, not necessarily turbulent), dynamo physics can 

be further simplified when helicity injection is slow on timescales establishing quasi-

equilibrium via the momentum equation. Then we can replace dynamics in Eq. (4) by a 

sequence of quasi-equilibria. Doing this and using Eq. (7) with K ≈ ΨPOLΨTOR, we obtain 

as the dynamo model:  

 

  

dK/dt  = ΩK(ΨPOL/ΨTOR)  - K/τK     (9)  

   

0 =  j x B + {ρ(voφ
2/r) - ρ∇VG - ∇p}   (10)   

  



 5 

with the caveat that angular momentum input via Ω averaged over the dynamo cannot 

exceed the net input of momentum against momentum losses. 

 

Application to Accretion Disks 

An example astrophysical application is the calculation of parameters for 

jet/radiolobes produced by accretion around supermassive black holes. Refs.  [11] and 

[12] use Eq. (10) to approximate the magnetic structure, giving simply ΨTOR =                 

(L/a) (lnR/a)ΨPOL with dynamo radius a, jet length L >> a, and radiolobe radius R ≈ L 

(confined by ambient pressure). Since the system is relatively isolated, we can ignore 

both momentum losses and helicity losses, giving dL/dt = (aΩ/lnR/a), which is much less 

than Alfven times for this problem, hence justifying dynamics as a series of quasi-

equilibria as in Eq. (10). This dL/dt can be related to the black hole accretion rate dM/dt 

using equilibrium dimensions scaled on the Swarzchild radius ∝ the black hole mass M at 

any chosen time. These simple results prove to be a sufficient framework to deduce that 

the jet/radiolobe becomes a cosmic ray accelerator, and from this the actual loss of 

poloidal flux, hence helicity, taken away by the cosmic rays [11]. 

The essential feature is the self-excited dynamo, which then dominates the 

dynamics. By Eq. (9), this requires, first, that the dynamo is self-excited to the level 

required to produce jet-like equilibria by Eq. (10) [11]. The dynamo itself is just that part 

of the equilibrium consisting of a rotating plasma confined by gravity, the kinetic angular 

momentum of the dynamo ions being converted to canonical angular momentum of ion 

current flowing up the jet column [13]. The dynamo boundary is located in the disk 

corona where dynamo current can no longer be contained by gravity [11, 13]. Since the 

coronal field would be quasi-force free with ΨTOR ≈ ΨPOL, K would grow exponentially by 

Eq. (9) until helicity spills out of the dynamo as a jet of current growing in length as M 

grows, at constant I equal to the current at the threshold of gravitational confinement of 

the dynamo current [11]. One could extend the coronal equilibrium model of Ref. [14] to 

the interior if, for example, the region interior to the corona is dominated by radiation 

pressure near the Eddington limit [8, 12]. 

As this example suggests, magnetic relaxation essential to the self-excited 

dynamo does not necessarily mean relaxation to a state of minimum magnetic energy at 
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constant helicity. The extent of relaxation in the region of helicity generation is in part 

controlled by the momentum source [4], and the expanding radiolobe is only a little bit 

relaxed, giving a magnetic energy and helicity dominated by the lobe vacuum field due to 

the jet current deep inside the lobe (hence the factor lnR/a above) [11].    

 

Application to Fusion Reactors 

Up to now, applications of helicity injection in fusion research have employed 

external helicity sources, as in the case of electrostatic gun injection mentioned above. In 

RFP’s and spheromaks, magnetic relaxation is involved to satisfy equilibrium, giving 

excessive heat loss [4]. Magnetic relaxation is not required for tokamaks employing 

neutral beam injection (NBI) just to produce toroidal current. NBI current could also 

build up current in spheromaks, possibly maintaining a stable current profile [10]. 

The NBI current drive in tokamaks is thought to inject current directly (the Ohkawa 

current parallel to B). Though this can give a fusion power gain Q > 10 in tokamaks, and 

also spheromaks [10], greater efficiency is highly desirable. Greater efficiency could be 

achieved using NBI-injected momentum to drive a self-excited dynamo in spheromaks.       

The efficiency can be written as: 

 

          I/P         =          (τDYN/ΨPOL)      (13) 

 

where τDYN = (τM/βM) ≤ τΩ with momentum lifetime τM from Eq. (4) (by viscosity or 

transport to the walls) and βM = (ρvφ
2µo/B2) representing energy partition by Eqs. (3) and 

(4). Rearranging terms gives ΨPOL = (P/I)τDYN in volt-seconds. The time τDYN is unknown, 

but might be several times the particle containment time, hence > 10 sec for energy 

confinement times > 1 sec. Energy confinement sufficient for fusion ignition typically 

requires ΨPOL ≈ RI ≈ 100, perhaps giving an efficiency much greater than the Ohkawa 

efficiency.  

           Plasma gun injection across field lines also injects momentum. In a uniform field 

electric polarization allows the plasma to flow unimpeded, while in a helical field v x B 

polarization drives currents that transfer gun momentum to magnetic energy. This 

internal dynamo effect has been demonstrated in tokamaks [15].  
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           Example 

           An example velocity field creating a dynamo in 2D without resorting to turbulence 

can be found by introducing A = f(t) Ao (x) into Eq. (1) with ∇φ = 0 (fully efficient use of 

the polarization electric field). This gives: 

 

           v⊥                  =          - (df/dt Ao x Bo)/Bo
2      (14) 

 

For Ao giving a finite result, an exponential f would give exponentially increasing helicity 

in the dynamo until some other limit is reached (e.g. jet ejection from an accretion 

dynamo).        

           In practice any v giving a component of v x B parallel to A can drive helicity. An 

example using gun injection to achieve nuclear ignition in a spheromak by ohmic heating 

alone will be discussed in a separate paper in preparation. 

 

           Discussion 

           We have derived a simplified model of the αω dynamo that unifies its application 

to astrophysics and to fusion research. The model treats dynamics as a change in helicity, 

dK/dt by Eq. (9), for magnetic fields evolving as a sequence of equilibria, by Eq. (10). 

For all applications, persistence of the dynamo depends on the stability of this sequence 

of equilibria, to avoid excessive heat leakage and to avoid killing the dynamo by MHD 

turbulence causing v to align with B [10]. Implications for accretion dynamos in 

astrophysics are discussed in Ref. [9], and for fusion, in Refs. [12] and [13] and a paper 

in progress. Otherwise the main difference between the astrophysical dynamos and self-

excited spheromak dynamos for fusion concern the mission: in astrophysics, to explain 

jet/radiolobes as a failure of dynamo plasma confinement in the dynamo; in fusion, to 

achieve plasma confinement good enough to achieve nuclear ignition in a device smaller 

than tokamaks.  

Gun experiments of interest to fusion may also shed light on cross-field 

momentum propagation during accretion, for example, polarization effects on “winds” 
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ejected out of a dynamo, discussed in Ref. [16]. Jets penetrating deeply inward might also 

contribute to fueling a black hole by shedding momentum as current. The range of a jet at 

which its kinetic energy is dissipated electrically is ≈ w βJET cosθ for a jet of width w, 

angle θ relative to B, and ratio βJET of kinetic to magnetic energy density.   

 I would like to thank Harry McLean and Bick Hooper for helpful discussions. 
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